Abstract

Explaining the emergence of life is perhaps central and the most challenging question in modern science. Within this area of research, the emergence and evolution of the genetic code is supposed to be a critical transition in the evolution of modern organisms. The canonical genetic code is one of the most dominant aspects of life on this planet, and thus studying its origin is critical to understanding the evolution of life, including life’s emergence. In this sense it is possible to view the ribosome as a digital-to-analogue information converter. Why the translation apparatus evolved, is one of the enduring mysteries of molecular biology. Assuming the hypothesis that during the emergence of life evolution had to first involve autocatalytic systems, which only subsequently acquired the capacity of genetic heredity, in the present article we discuss some aspects and causes of the possible emergence of digital, discrete information arising from analogue information realized in the intra- and inter-molecular interactions throughout molecular evolution. How such reverse translation was achieved at a molecular level is still unclear. The results of such debates and investigations might shift current biological paradigms and might also have a momentous significance for modern philosophy in understanding our place in the universe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call