Abstract

Considering models based on classical probability theory, states of signals in the brain should be identified with probability distributions of certain random point fields representing the configuration of excited neurons. Then the outcomes of EEG-measurements can be considered as random variables being certain functions of that random point field. In practice, specialists use certain statistical methods evaluating the outcomes of the sequence of these measurements. To make these statistical investigations precise, one should know the distribution of the stochastic process on the space of point configurations representing the time evolution of the configuration of excited neurons in the brain. Up to now that distribution is totally unknown. In this paper we consider time evolutions of random point fields as well as the distribution of the outcomes of EEG-measurements related to unitary evolutions of certain quantum states used in [4, 5, 10 – 14] in order to describe activities of the brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.