Abstract

The Oppenheim conjecture, proved by Margulis in 1986, states that the set of values at integral points of an indefinite quadratic form in three or more variables is dense, provided the form is not proportional to a rational form. In this paper we study the distribution of values of such a form. We show that if the signature of the form is not (2, 1) or (2, 2), then the values are uniformly distributed on the real line, provided the form is not proportional to a rational form. In the cases where the signature is (2, 1) or (2, 2) we show that no such universal formula exists, and give asymptotic upper bounds which are in general best possible. Let Q be an indefinite nondegenerate quadratic form in n variables. Let LQ = Q(Z) denote the set of values of Q at integral points. The Oppenheim conjecture, proved by Margulis (cf. [Mar]) states that if n ≥ 3, and Q is not proportional to a form with rational coefficients, then LQ is dense. The Oppenheim conjecture enjoyed attention and many studies since it was conjectured in 1929 mostly using analytic number theory methods. In this paper we study some finer questions related to the distribution the values of Q at integral points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.