Abstract
The constrained optimization problem with a quadratic cost functional and two quadratic equality constraints has been studied by Bar-on and Grasse, with positive-definite matrix in the objective. In this note, we shall relax the matrix in the objective to be positive semidefinite. A necessary and sufficient condition to characterize a local optimal solution to be global is established. Also, a perturbation scheme is proposed to solve this generalized problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.