Abstract

We consider a linear-convex control system defined by a set of differential equations with continuous matrix coefficients. The system may have control parameters, as well as uncertainties (interference) the possible values of which are subject to strict pointwise constraints. For this system, over a finite period of time, taking into account the constraints, we study the problem of guaranteed hitting the target set from a given initial position despite the effect of uncertainty. The main stage of solving the problem is the construction of an alternating integral and a solvability set. To construct the latter, the greatest computational complexity is the calculation of the geometric difference between the target set and the set determined by the uncertainty. A two-dimensional example of this problem is considered for which a method is proposed for finding the solvability set without the need to calculate the convex hull of the difference of the support functions of the sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call