Abstract

Let $m$ be a positive integer and let $E$ be an elliptic curve over $\mathbb{Q}$ with the property that $m\mid\#E(\mathbb{F}_p)$ for a density $1$ set of primes $p$. Building upon work of Katz and Harron-Snowden, we study the probability that $m$ divides the the order of the torsion subgroup of $E(\mathbb{Q})$: we find it is nonzero for all $m \in \{ 1, 2, \dots, 10, 12, 16\}$ and we compute it exactly when $m \in \{ 1,2,3,4,5,7 \}$. As a supplement, we give an asymptotic count of elliptic curves with extra level structure when the parametrizing modular curve is torsion free of genus zero.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call