Abstract

Continuity as appears to us immediately by intuition (in the flow of time and in motion) differs from its current formalization, the arithmetical continuum or equivalently the set of real numbers used in modern mathematical analysis. Motivated by the known mathematical and physical problems arising from this formalization of the continuum, our aim in this paper is twofold. Firstly, by interpreting Chaitin’s variant of Gödel’s first incompleteness theorem as an inherent uncertainty or fuzziness of the arithmetical continuum, a formal set-theoretic entropy is assigned to the arithmetical continuum. Secondly, by analyzing Noether’s theorem on symmetries and conserved quantities, we argue that whenever the four dimensional space-time continuum containing a single, stationary, asymptotically flat black hole is modeled by the arithmetical continuum in the mathematical formulation of general relativity, the hidden set-theoretic entropy of this latter structure reveals itself as the entropy of the black hole (proportional to the area of its “instantaneous” event horizon), indicating that this apparently physical quantity might have a pure set-theoretic origin, too.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.