Abstract
The paper suggests an explanation of the deviations from the power law which are observed in frequency spectra of discrete radio sources at decametric wavelengths. It has been shown that a possible mechanism of the deviations is a combined effect of the stimulated and spontaneous scattering of relativistic electrons in the turbulent plasma of a source, as well as ionization energy losses thereof. The distribution function of the relativistic electrons, empirically established in an earlier paper (Braudeet al., 1971) has been derived from the kinetic equation. For a number of discrete sources the turbulence energy density and the plasma concentration are deduced with the aid of experimental data on low-frequency radio spectra.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.