Abstract

A model of Poissonian observation having a jump (change-point) in the intensity function is considered. Two cases are studied. The first one corresponds to the situation when the jump size converges to a non-zero limit, while in the second one the limit is zero. The limiting likelihood ratios in these two cases are quite different. In the first case, like in the case of a fixed jump size, the normalized likelihood ratio converges to a log Poisson process. In the second case, the normalized likelihood ratio converges to a log Wiener process, and so, the statistical problems of parameter estimation and hypotheses testing are asymptotically equivalent in this case to the well known problems of change-point estimation and testing for the model of a signal in white Gaussian noise. The properties of the maximum likelihood and Bayesian estimators, as well as those of the general likelihood ratio, Wald's and Bayesian tests are deduced form the convergence of normalized likelihood ratios. The convergence of the moments of the estimators is also established. The obtained theoretical results are illustrated by numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.