Abstract

The term electrowetting is commonly used for phenomena where shape and wetting behavior of liquid droplets are changed by the application of electric fields. We develop and analyze a model for electrowetting that combines the Navier–Stokes system for fluid flow, a phase-field model of Cahn–Hilliard type for the movement of the interface, a charge transport equation, and the potential equation of electrostatics. The model is derived with the help of a variational principle due to Onsager and conservation laws. A modification of the model with the Stokes system instead of the Navier– Stokes system is also presented. The existence of weak solutions is proved for several cases in two and three space dimensions, either with non-degenerate or with degenerate electric conductivity vanishing in the droplet exterior. Some numerical examples in two space dimensions illustrate the applicability of the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.