Abstract
This paper presents a partitioned strong coupling algorithm for fluid–structure interaction in the arbitrary Lagrangian–Eulerian finite element framework. The incompressible Navier–Stokes equations are solved by the semi-implicit characteristic-based split (CBS) scheme while the structural equations are temporally advanced by the Bathe method. The celled-based smoothed finite element method is adopted for the solution of a geometrically nonlinear solid. To update the dynamic mesh, the moving submesh approach is performed in conjunction with the ortho-semi-torsional spring analogy method. A mass source term is implanted into the pressure Poisson equation to respect the geometric conservation law for the fractional-step-type CBS fluid solver. The iterative solution is achieved by fixed-point method with Aitken's Δ2 accelerator. The proposed methodology is validated against flow-induced oscillations of a bluff body and a flexible body. The overall numerical results agree well with the available data. Some important flow phenomena have been disclosed successfully.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.