Abstract

This paper presents a partitioned strong coupling algorithm for fluid–structure interaction in the arbitrary Lagrangian–Eulerian finite element framework. The incompressible Navier–Stokes equations are solved by the semi-implicit characteristic-based split (CBS) scheme while the structural equations are temporally advanced by the Bathe method. The celled-based smoothed finite element method is adopted for the solution of a geometrically nonlinear solid. To update the dynamic mesh, the moving submesh approach is performed in conjunction with the ortho-semi-torsional spring analogy method. A mass source term is implanted into the pressure Poisson equation to respect the geometric conservation law for the fractional-step-type CBS fluid solver. The iterative solution is achieved by fixed-point method with Aitken's Δ2 accelerator. The proposed methodology is validated against flow-induced oscillations of a bluff body and a flexible body. The overall numerical results agree well with the available data. Some important flow phenomena have been disclosed successfully.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call