Abstract
The Loewner partial differential equation provides a one‐parametric family of conformal maps on the unit disk. The images describe a flow of an expanding simply‐connected domain, called the Loewner flow, on the complex plane. In this paper, we present a numerical algorithm for solving the radial Loewner partial differential equation. The algorithm is applied to visualization of Loewner flows with the performance and precision. From the theoretical point of view, our algorithm is based on a recursive formula for determining coefficients of polynomial approximations. We prove that each coefficient converges to true values with reasonable regularity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.