Abstract
The condition number of a discontinuous Galerkin finite element discretization preconditioned with a nonoverlapping additive Schwarz method is analyzed. We improve the result of Antonietti and Houston (J Sci Comput 46 (2011), 124–149), where a bound has been proved for a two‐level nonoverlapping additive Schwarz method with coarse problem using polynomials of degree on a coarse mesh size . In a more general framework, where the concurrency of the algorithm is increased by applying solvers on subdomains smaller than the coarse grid cells, we prove that the condition number of the preconditioned system is where is the coarse space element degree polynomial and is the size of subdomain where local problems are solved in parallel. Our result also extends to the case of discontinuous coefficient, piecewise constant on the coarse grid, for a composite continuous–discontinuous Galerkin discretization. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1572–1590, 2016
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Numerical Methods for Partial Differential Equations
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.