Abstract
The calculus of variations is a field of mathematical analysis born in 1687 with Newton’s problem of minimal resistance, which is concerned with the maxima or minima of integral functionals. Finding the solution of such problems leads to solving the associated Euler–Lagrange equations. The subject has found many applications over the centuries, e.g., in physics, economics, engineering and biology. Up to this moment, however, the theory of the calculus of variations has been confined to Newton’s approach to calculus. As in many applications negative values of admissible functions are not physically plausible, we propose here to develop an alternative calculus of variations based on the non-Newtonian approach first introduced by Grossman and Katz in the period between 1967 and 1970, which provides a calculus defined, from the very beginning, for positive real numbers only, and it is based on a (non-Newtonian) derivative that permits one to compare relative changes between a dependent positive variable and an independent variable that is also positive. In this way, the non-Newtonian calculus of variations we introduce here provides a natural framework for problems involving functions with positive images. Our main result is a first-order optimality condition of Euler–Lagrange type. The new calculus of variations complements the standard one in a nontrivial/multiplicative way, guaranteeing that the solution remains in the physically admissible positive range. An illustrative example is given.
Highlights
A popular method of creating a new mathematical system is to vary the axioms of a known one
It has been shown that non-Newtonian/multiplicative calculi are more suitable than the ordinary Newtonian/additive calculus for some problems, e.g., in actuarial science, finance, economics, biology, demography, pattern recognition in images, signal processing, thermostatistics and quantum information theory [3,4,5,6,7]
It is enough to understand that a non-Newtonian calculus is a methodology that allows one to have a different look at problems that can be investigated via calculus: it provides differentiation and integration tools, based on multiplication instead of addition, and in some cases—mainly problems of price elasticity, multiplicative growth, etc.—the use of such multiplicative calculi is preferable to the traditional Newtonian calculus [11,12,13,14]
Summary
A popular method of creating a new mathematical system is to vary the axioms of a known one. It has been shown that non-Newtonian/multiplicative calculi are more suitable than the ordinary Newtonian/additive calculus for some problems, e.g., in actuarial science, finance, economics, biology, demography, pattern recognition in images, signal processing, thermostatistics and quantum information theory [3,4,5,6,7]. This is explained by the fact that while the basis for the standard/additive calculus is the representation of a function as locally linear, the basis of a multiplicative calculus is the representation of a function as locally exponential [1,3,7]. A non-Newtonian calculus is a self-contained system, independent of any other system of calculus [15]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.