Abstract

Granular flow is broadly classified into two distinct regimes. The first is rapid granular flow where particle collisions are assumed to be instantaneous and the second is dense granular flow where particles move together and slide on each other. Many contributions on the modelling of granular flow and the solving of such models numerically, restrict themselves to one of these distinct regimes. In some applications this is not possible. Because many features of granular media can be reproduced by a system of smooth hard spheres with inelastic collisions, it is tempting to extend the hydrodynamic modelling often used for rapid granular flow to the dense regime by means of algebraic relations. We present here a kinetic modelling approach inheriting a dynamic Coulomb friction for the dilute regime extended by a smooth transition to a full Coulomb friction for dense granular flow. The system of hydrodynamic equations together with strongly nonlinear, diverging algebraic relations for the system quantities pos...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.