Abstract

The practical usefulness of Markov models and Markovian decision process has been severely limited due to their extremely large dimension. Thus, a reduced model without sacrificing significant accuracy can be very interesting. The homogeneous finite Markov chain's long-run behaviour is given by the persistent states, obtained after the decomposition in classes of connected states. In this paper we expound a new reduction method for ergodic classes formed by such persistent states. An ergodic class has a steady-state independent of the initial distribution. This class constitutes an irreducible finite ergodic Markov chain, which evolves independently after the capture of the event. The reduction is made according to the significance of steady-state probabilities. For being treatable by this method, the ergodic chain must have the Two-Time-Scale property. The presented reduction method is an approximate method. We begin with an arrangement of irreducible Markov chain states, in decreasing order of their ste...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.