Abstract

In this paper, we are interested in a Neumann-type series for modified Bessel functions of the first kind which arises in the study of Dunkl operators associated with dihedral groups and as an instance of the Laguerre semigroup constructed by Ben Said-Kobayashi-Orsted. We first revisit the particular case corresponding to the group of square-preserving symmetries for which we give two new and different proofs other than the existing ones. The first proof uses the expansion of powers in a Neumann series of Bessel functions, while the second one is based on a quadratic transformation for the Gauss hypergeometric function and opens the way to derive further expressions when the orders of the underlying dihedral groups are powers of two. More generally, we give another proof of De Bie et al.’s formula expressing this series as a Φ 2 \Phi _2 -Horn confluent hypergeometric function. In the course of the proof, we shed light on the occurrence of multiple angles in their formula through elementary symmetric functions and get a new representation of Gegenbauer polynomials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.