Abstract

AbstractA “climatology” of supercooled cloud tops is presented for southeastern Australia and the western United States, where historic glaciogenic cloud-seeding trials have been located. The climatology finds that supercooled cloud tops are common over the mountainous region of southeastern Australia and Tasmania (SEAT). Regions where cloud-seeding trials reported positive results coincide with a higher likelihood of observing supercooled cloud tops. Maximum absolute frequencies (AFs) occur ∼40% of the time during winter. There is a relationship between the underlying orography and the likelihood of observing supercooled liquid water (SLW)-topped clouds. Regions of the United States that have been the subject of cloud-seeding trials show lower AFs of SLW-topped clouds. The maximum is located over the Sierra Nevada and occurs ∼20% of the time during winter (Sierra Cooperative Pilot Project). These sites are on mountains with peaks higher than any found in SEAT (>3000 m). For the Sierra Nevada, the AF of SLW-topped clouds decreases as the elevation increases, with glaciation occurring at the higher elevations. The remote sensing of supercooled cloud tops is not proof of a region’s amenability for glaciogenic cloud seeding. This study simply highlights the significant environmental differences between historical cloud-seeding regions in the United States and Australia, suggesting that it is not reasonable to extrapolate results from one region to another. Without in situ cloud microphysical measurements, in-depth knowledge of the timing and duration of potentially seedable events, or knowledge of the synoptic forcing of such events, it is not possible to categorize a region’s potential for precipitation augmentation operations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.