Abstract
Working with so-called linkages allows to define a copula-based, [0,1]-valued multivariate dependence measure ζ1(X,Y) quantifying the scale-invariant extent of dependence of a random variable Y on a d-dimensional random vector X=(X1,…,Xd) which exhibits various good and natural properties. In particular, ζ1(X,Y)=0 if and only if X and Y are independent, ζ1(X,Y) is maximal exclusively if Y is a function of X, and ignoring one or several coordinates of X can not increase the resulting dependence value. After introducing and analyzing the metric D1 underlying the construction of the dependence measure and deriving examples showing how much information can be lost by only considering all pairwise dependence values ζ1(X1,Y),…,ζ1(Xd,Y) we derive a so-called checkerboard estimator for ζ1(X,Y) and show that it is strongly consistent in full generality, i.e., without any smoothness restrictions on the underlying copula. Some simulations illustrating the small sample performance of the estimator complement the established theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.