Abstract
ABSTRACTThe present paper introduces a general notion and presents results of bootstrapped empirical estimators of the semi-Markov kernels and of the conditional transition distributions for semi-Markov processes with countable state space, constructed by exchangeably weighting the sample. Our proposal provides a unification of bootstrap methods in the semi-Markov setting including, in particular, Efron's bootstrap. Asymptotic properties of these generalised bootstrapped empirical distributions are obtained, under mild conditions by a martingale approach. We also obtain some new results on the weak convergence of the empirical semi-Markov processes. We apply these general results in several statistical problems such as the construction of confidence bands and the goodness-of-fit tests where the limiting distributions are derived under the null hypothesis. Finally, we introduce the quantile estimators and their bootstrapped versions in the semi-Markov framework and we establish their limiting laws by using the functional delta methods. Our theoretical results and numerical examples by simulations demonstrate the merits of the proposed techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.