Abstract

We develop a theoretical framework to characterize the hardness of indexing data sets on block-access memory devices like hard disks. We define an indexing workload by a data set and a set of potential queries. For a workload, we can construct an indexing scheme, which is a collection of fixed-sized subsets of the data. We identify two measures of efficiency for an indexing scheme on a workload: storage redundancy, r (how many times each item in the data set is stored), and access overhead, A (how many times more blocks than necessary does a query retrieve).For many interesting families of workloads, there exists a trade-off between storage redundancy and access overhead. Given a desired access overhead A , there is a minimum redundancy that any indexing scheme must exhibit. We prove a lower-bound theorem for deriving the minimum redundancy. By applying this theorem, we show interesting upper and lower bounds and trade-offs between A and r in the case of multidimensional range queries and set queries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.