Abstract

This paper presents a development of the so-called kinetic theory for active particles to the modeling of living, hence complex, systems localized in networks. The overall system is viewed as a network of interacting nodes, mathematical equations are required to describe the dynamics in each node and in the whole network. These interactions, which are nonlinearly additive, are modeled by evolutive stochastic games. The first conceptual part derives a general mathematical structure, to be regarded as a candidate towards the derivation of models, suitable to capture the main features of the said systems. An application on opinion formation follows to show how the theory can generate specific models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.