Abstract
We propose to formally derive a low Mach number model adapted to the modeling of a water nuclear core (e.g. of PWR- or BWR-type) in the forced convection regime or in the natural convection regime by filtering out the acoustic waves in the compressible Navier-Stokes system. Then, we propose a monodimensional stationary analytical solution with regular and singular charge loss when the equation of state is a stiffened gas equation. Moreover, we show that this solution may not be admissible from a physical or a mathematical point of view for a particular choice of the mass flux and we study the consistency between this solution and the solution obtained from a Boussinesq approximation. Let us underline that the modeling of the nuclear core is simplified in this paper. For example, the flow is a single-phase flow and we do not model neither the porosity nor the turbulence. Nevertheless, it will be possible to enrich the modeling in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: ESAIM: Proceedings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.