Abstract

Abstract In this paper, the linear relationship between fractal dimensions and the order of fractional calculus of functions in Holder space has been mainly investigated. Under specific Holder condition, the linear connection between Box dimension and the order of Riemann-Liouville fractional integral and derivative has been proved. This linear connection is also established with K-dimension and Packing dimension. Some function examples have been given in the end.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.