Abstract

We introduce and start the study of a bialgebra of graphs, which we call the 4- bialgebra , and of the dual bialgebra of 4- invariants . The 4-bialgebra is similar to the ring of graphs introduced by W. T. Tutte in 1946, but its structure is more complicated. The roots of the definition are in low dimensional topology, namely, in the recent theory of Vassiliev knot invariants. In particular, 4-invariants of graphs determine Vassiliev invariants of knots. The relation between the two notions is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.