Abstract
A major result in Algebraic Geometry is the theorem of Bernstein–Gelfand–Gelfand that states the existence of an equivalence of triangulated categories: gr Λ ≅ 𝒟b(Coh ℙn), where gr Λ denotes the stable category of finitely generated graded modules over the n + 1 exterior algebra and 𝒟b(Coh ℙn) is the derived category of bounded complexes of coherent sheaves on projective space ℙn. Generalizations of this result were obtained in Martínez-Villa and Saorín (2004) and from a different point of view, the theorem has been extended by Yanagawa (2004) to ℤn-graded modules over the polynomial algebra. This generalization has important applications in combinatorial commutative algebra. The aim of the article is to extend the results of Martínez-Villa and Saorín (2004) to group graded algebras in order to obtain a generalization of Yanagawa's results having in mind the application to other settings (Geigle and Lenzing, 1987).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.