Abstract
This article deals with a nonrelativistic quantum mechanical study of a dynamical system which generalizes the isotropic harmonic oscillator system in three dimensions. The Schrodinger equation for this generalized oscillator system is separable in spherical, cylindrical, and spheroidal (prolate and oblate) coordinates. The quantum mechanical spectrum of this system is worked out in some details. The problem of interbasis expansions of the wavefunctions is completely solved. The coefficients for the expansion of the cylindrical basis in terms of the spherical basis, and vice-versa, are found to be analytic continuations (to real values of their arguments) of Clebsch-Gordan coefficients for the group SU(2). The interbasis expansion coefficients for the prolate and oblate spheroidal bases in terms of the spherical or the cylindrical bases are shown to satisfy three-term recursion relations. Finally, a connection between the generalized oscillator system (projected on the z-line) and the Morse system (in one dimension) is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.