Abstract

Motivated by a question in cellular telecommunication technology, we investigate a family of graph coloring problems where several colors can be assigned to each vertex and no two colors are the same within any ball of radiusR. We find bounds and coloring algorithms for different kinds of graphs including trees,n-cycles, hypercubes and lattices. We briefly examine connections to Heawood's map color theorem and state a few conjectures and open problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.