Abstract

Let Γ(m) denotes the gamma function of a real number m∉{0,-1,-2,…}. Then the difference matrix Δ^α of a fractional order α is defined as (Δ^α v)_k=∑_i〖(-1)^i (Γ(α+1))/(i!Γ(α-i+1)) v_(k+i) 〗. Using the difference operator Δ^α, we introduce paranormed difference sequence spaces N_θ (Δ^α,f,Λ,p) and S_θ (Δ^α,f,Λ,p) of fractional orders involving lacunary sequence, θ; modulus function, f and multiplier sequence, Λ=(λ_k). We investigate topological structures of these spaces and examine various inclusion relations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.