Abstract
We consider the products of $m\ge 2$ independent large real random matrices with independent vectors $(X_{jk}^{(q)},X_{kj}^{(q)})$ of entries. The entries $X_{jk}^{(q)},X_{kj}^{(q)}$ are correlated with $\rho=\mathbb E X_{jk}^{(q)}X_{kj}^{(q)}$. The limit distribution of the empirical spectral distribution of the eigenvalues of such products doesn't depend on $\rho$ and equals to the distribution of $m$th power of the random variable uniformly distributed on the unit disc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.