Abstract

Many practical integer programming problems involve variables with one or two-sided bounds. Dunkel and Schulz (A refined Gomory–Chvátal closure for polytopes in the unit cube, http://www.optimization-online.org/DB_FILE/2012/03/3404.pdf, 2012) considered a strengthened version of Chvátal–Gomory (CG) inequalities that use 0–1 bounds on variables, and showed that the set of points in a rational polytope that satisfy all these strengthened inequalities is a polytope. Recently, we generalized this result by considering strengthened CG inequalities that use all variable bounds. In this paper, we generalize further by considering not just variable bounds, but general linear constraints on variables. We show that all points in a rational polyhedron that satisfy such strengthened CG inequalities form a rational polyhedron. We also extend this polyhedrality result to mixed-integer sets defined by linear constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.