Abstract

AbstractThe test ideal τ(R) of a ring R of prime characteristic is an important object in the theory of tight closure. In this paper, we study a generalization of the test ideal, which is the ideal τ(at) associated to a given ideal a with rational exponent t ≥ 0. We first prove a key lemma of this paper (Lemma 2.1), which gives a characterization of the ideal τ(at). As applications of this key lemma, we generalize the preceding results on the behavior of the test ideal τ(R). Moreover, we prove an analogue of so-called Skoda’s theorem, which is formulated algebraically via adjoint ideals by Lipman in his proof of the “modified Briançon-Skoda theorem.”

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.