Abstract

A crucial problem concerning Tikhonov regularization is the proper choice of the regularization parameter. This paper deals with a generalization of a parameter choice rule due to Regińska (1996) [31], analyzed and algorithmically realized through a fast fixed-point method in Bazán (2008) [3], which results in a fixed-point method for multi-parameter Tikhonov regularization called MFP. Like the single-parameter case, the algorithm does not require any information on the noise level. Further, combining projection over the Krylov subspace generated by the Golub–Kahan bidiagonalization (GKB) algorithm and the MFP method at each iteration, we derive a new algorithm for large-scale multi-parameter Tikhonov regularization problems. The performance of MFP when applied to well known discrete ill-posed problems is evaluated and compared with results obtained by the discrepancy principle. The results indicate that MFP is efficient and competitive. The efficiency of the new algorithm on a super-resolution problem is also illustrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call