Abstract

One of the key concepts in a general method of spatial kinematic synthesis is a stretch-rotation operator applied to members of a general spatial kinematic chain. The latter consists of one or more interconnected loops of successively ball-jointed bar-slideball members. Each member is represented by a vector free to stretch-rotate with the motion of the chain. In the mathematical model of the general chain, displacement is simulated by means of stretch-rotation tensors operating on each member vector. Appropriate mathematical constraints render the general chain and its mathematical model equivalent to a particular mechanism. With this approach and by taking derivatives, first, second, and higher-order loop equations can be developed which form the basis for a general method of spatial kinematic synthesis, applicable to path, function and motion generation (body guidance) with first, second, and higher-order as well as for combined “point-order” approximations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call