Abstract

Motivated by recent developments in cosmology and string theory, we introduce a functional calculus appropriate for the study of non-linear nonlocal equations of the form f(Δ)u = U(x, u(x)) on Euclidean space. We prove that under some technical assumptions, these equations admit smooth solutions. We also consider nonlocal equations on compact Riemannian manifolds, and we prove the existence of smooth solutions. Moreover, in the Euclidean case we present conditions on f which guarantee that the solutions we find are, in fact, real-analytic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.