Abstract
Abstract This survey concerns a causal elastic wave equation which implies frequency power-law attenuation. The wave equation can be derived from a fractional Zener stress-strain relation plus linearized conservation of mass and momentum. A connection between this four-parameter fractional wave equation and a physically well established multiple relaxation acoustical wave equation is reviewed. The fractional Zener wave equation implies three distinct attenuation power-law regimes and a continuous distribution of compressibility contributions which also has power-law regimes. Furthermore it is underlined that these wave equation considerations are tightly connected to the representation of the fractional Zener stress-strain relation, which includes the spring-pot viscoelastic element, and by a Maxwell-Wiechert model of conventional springs and dashpots. A purpose of the paper is to make available recently published results on fractional calculus modeling in the field of acoustics and elastography, with special focus on medical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.