Abstract
The study of fourth order partial differential equations has flourished in the last years, however, a p(⋅)-biharmonic problem with no-flux boundary condition has never been considered before, not even for constant p. This is an important step further, since surfaces that are impermeable to some contaminants are appearing quite often in nature, hence the significance of such boundary condition. By relying on several variational arguments, we obtain the existence and the multiplicity of weak solutions to our problem. We point out that, although we use a mountain pass type theorem in order to establish the multiplicity result, we do not impose an Ambrosetti–Rabinowitz type condition, nor a symmetry condition, on our nonlinearity f.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.