Abstract

We prove that one of the conditions in Zaicev's formula for the PI-exponent and in its natural generalization for the Hopf PI-exponent, can be weakened. Using the modification of the formula, we prove that if a finite-dimensional semisimple Lie algebra acts by derivations on a finite-dimensional Lie algebra over a field of characteristic 0, then the differential PI-exponent coincides with the ordinary one. Analogously, the exponent of polynomial G-identities of a finite-dimensional Lie algebra with a rational action of a connected reductive affine algebraic group G by automorphisms, coincides with the ordinary PI-exponent. In addition, we provide a simple formula for the Hopf PI-exponent and prove the existence of the Hopf PI-exponent itself for H-module Lie algebras whose solvable radical is nilpotent, assuming only the H-invariance of the radical, i.e. under weaker assumptions on the H-action, than in the general case. As a consequence, we show that the analog of Amitsur's conjecture holds for G-codimensions of all finite-dimensional Lie G-algebras whose solvable radical is nilpotent, for an arbitrary group G.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.