Abstract

We prove a factorization formula for the point-to-point partition function associated with a model of directed polymers on the space-time lattice mathbb {Z}^{d+1}. The polymers are subject to a random potential induced by independent identically distributed random variables and we consider the regime of weak disorder, where polymers behave diffusively. We show that when writing the quotient of the point-to-point partition function and the transition probability for the underlying random walk as the product of two point-to-line partition functions plus an error term, then, for large time intervals [0, t], the error term is small uniformly over starting points x and endpoints y in the sub-ballistic regime Vert x - y Vert le t^{sigma }, where sigma < 1 can be arbitrarily close to 1. This extends a result of Sinai, who proved smallness of the error term in the diffusive regime Vert x - y Vert le t^{1/2}. We also derive asymptotics for spatial and temporal correlations of the field of limiting partition functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.