Abstract
This paper deals with the weak formulation of a free (moving) boundary problem arising in theoretical glaciology. Considering shallow ice sheet flow, we present the mathematical analysis and the numerical solution of the second order nonlinear degenerate parabolic equation modelling, in the isothermal case, the ice sheet non-Newtonian dynamics. An obstacle problem is then deduced and analyzed. The existence of a free boundary generated by the support of the solution is proved and its location and evolution are qualitatively described by using a comparison principle and an energy method. Then the solutions are numerically computed with a method of characteristics and a duality algorithm to deal with the resulting variational inequalities. The weak framework we introduce and its analysis (both qualitative and numerical) are not restricted to the simple physics of the ice sheet model we consider nor to the model dimension; they can be successfully applied to more realistic and sophisticated models related to other geophysical settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.