Abstract

This contribution deals with a numerical regularization technique for con-figurational r-adaptivity and shape optimization based on a fictitious energy con-straint. The notion configurational refers to the fact that both r-adaptivity and shape optimization rely on an optimization of the potential energy with respect to changes of the (discrete) reference configuration. In the case of r-adaptivity, the minimization of the total potential energy optimizes the mesh and thus improves the accuracy of the finite element solution, whereas the maximization of the total potential energy by varying the initial shape increases the stiffness of the structure. In the context of r-adaptivity, the energy constraint sets the distortion of the mesh to a reasonable limit and improves the solvability of the problem. The application of the energy constraint to a node-based shape optimization is a remedy for well-known problems of node-based shape optimization methods with maintaining a smooth and regular boundary

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.