Abstract
Let G be a graph. Denote by W(G) its Wiener index and denote by Li(G) its i-iterated line graph. Dobrynin and Mel’nikov proposed to estimate the extremal values for the ratio Rk(G) = W(Lk(G)) / W(G) for k ≥ 1. Motivated by this we study the ratio for higher k’s. We prove that among all trees on n vertices the path Pn has the smallest value of this ratio for k ≥ 3. We conjecture that this holds also for k = 2, and even more, for the class of all connected graphs on n vertices. Moreover, we conjecture that the maximum value of the ratio is obtained for the complete graph.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.