Abstract

In the present work we discuss the kinetic neutron diffusion equation in homogeneous cylinder geometry. We construct solutions unaffected by a numerical artifact, known as stiffness of the equation system, for two energy groups, one and six precursor concentrations, respectively. Upon applying the Hankel transform in the diffusion equation one obtains a generalized system for the fast and thermal, and the precursor concentrations of delayed neutrons. The Hankel Transform together with the Parseval identity indicate a natural orthogonal basis that is convenient to expand solutions for extended problems in zero order Bessel functions. A direct comparison of results obtained by integral transform techniques against the results from spectral theory validate this procedure. We show numerical results for the one precursor group case as well as the six precursor group case and show consistency of the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call