Abstract
Multi-radio multi-channel (MRMC) wireless mesh networks (WMNs) hold the promise to become the next-generation networks to provide the service of ubiquitous computing, access to the Internet, and support for a large number of data flows. Many applications in WMNs can be modeled as a multi-flow coexistence problem. Assembling links distributed in orthogonal channels to support multiple flows is essentially a combinatorial optimization problem, which concerns channel assignment, path finding, and link scheduling. To make full use of network resources, links in different channel layers should be concatenated to compose data transfer paths for multiple flows with awareness of nodes’ free interfaces and available channels. Based on the analysis of traffic behaviors, this paper designs a coexisting algorithm to maximize the number of flows. Simulations are conducted in combinatorial cases with various traffic requests of multiple pairs, and the results show the efficacy of the proposed algorithm over a random network topology. This scheme can be used to develop routing and scheduling solutions for multi-flow network tasks through prior computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.