Abstract
We introduce in this article a class of transient random walks in a random environment on $\mathbb{Z}^d$. When $d\ge 2$, these walks are ballistic and we derive a law of large numbers, a central limit theorem and large-deviation estimates. In the so-called nestling situation, large deviations in the neighborhood of the segment $[0, v]$, $v$ being the limiting velocity, are critical. They are of special interest in view of their close connection with the presence of traps in the medium, that is, pockets where a certain spectral parameter takes atypically low values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.