Abstract
A module [Formula: see text] is called [Formula: see text]-separable if every proper finitely generated submodule of [Formula: see text] is contained in a proper finitely generated direct summand of [Formula: see text]. Indecomposable [Formula: see text]-separable modules are shown to be exactly the simple modules. While direct summands of an [Formula: see text]-separable module do not inherit the property, in general, the question of the stability under direct sums is unanswered. But we obtain some partial answers. It is shown that any infinite direct sum of [Formula: see text]-separable modules is [Formula: see text]-separable. Also, we prove that if [Formula: see text] and [Formula: see text] are [Formula: see text]-separable modules such that [Formula: see text] is [Formula: see text]-projective, then [Formula: see text] is [Formula: see text]-separable. We conclude the paper by providing some characterizations of several classes of rings in terms of [Formula: see text]-separable modules. Among others, we prove that the class of rings [Formula: see text] for which every (injective) [Formula: see text]-module is [Formula: see text]-separable is exactly that of semisimple rings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.