Abstract

This paper focuses on the investigation of a Kirchhoff-Schrödinger type elliptic system involving a fractional \(\gamma(.)\)-Laplacian operator. The primary objective is to establish the existence of weak solutions for this system within the framework of fractional Orlicz-Sobolev Spaces. To achieve this, we employ the critical point approach and direct variational principle, which allow us to demonstrate the existence of such solutions. The utilization of fractional Orlicz-Sobolev spaces is essential for handling the nonlinearity of the problem, making it a powerful tool for the analysis. The results presented herein contribute to a deeper understanding of the behavior of this type of elliptic system and provide a foundation for further research in related areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.