Abstract

We study the relaxation to equilibrium for a class of linear one-dimensional Fokker–Planck equations characterized by a particular subcritical confinement potential. An interesting feature of this class of Fokker–Planck equations is that, for any given probability density $e(x)$, the diffusion coefficient can be built to have $e(x)$ as steady state. This representation of the equilibrium density can be fruitfully used to obtain one-dimensional Wirtinger-type inequalities and to recover, for a sufficiently regular density $e(x)$, a polynomial rate of convergence to equilibrium. Numerical results then confirm the theoretical analysis, and allow to conjecture that convergence to equilibrium with positive rate still holds for steady states characterized by a very slow polynomial decay at infinity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.