Abstract

SummaryMultivariate distributions are more and more used to model the dependence encountered in many fields. However, classical multivariate distributions can be restrictive by their nature, while Sarmanov's multivariate distribution, by joining different marginals in a flexible and tractable dependence structure, often provides a valuable alternative. In this paper, we introduce some bivariate mixed Sarmanov distributions with the purpose to extend the class of bivariate Sarmanov distributions and to obtain new dependency structures. Special attention is paid to the bivariate mixed Sarmanov distribution with Poisson marginals and, in particular, to the resulting bivariate Sarmanov distributions with negative binomial and with Poisson‐inverse Gaussian marginals; these particular types of mixed distributions have possible applications in, for example modelling bivariate count data. The extension to higher dimensions is also discussed. Moreover, concerning the dependency structure, we also present some correlation formulas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.