Abstract

AbstractA body Ω floating in a fluid is subjected to small periodic displacement. Under idealized conditions the resulting wave pattern can be described by a linear boundary value problem for the Laplacian in an unbounded domain with a non‐coercive boundary condition on part of the boundary. Nevertheless uniqueness can be shown if Ω is confined to certain subsets of the fluid which can be described explicitly. This extends a result of V. G. Maz'ja saying that uniqueness holds provided that the exterior normal for ∂Ω avoids certain directions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.